ADAMTS13 Retards Progression of Diabetic Nephropathy by Inhibiting Intrarenal Thrombosis in Mice.
نویسندگان
چکیده
OBJECTIVE ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type I repeats-13) prevents microvascular thrombosis by cleaving prothrombogenic ultralarge von Willebrand factor (VWF) multimers. Clinical studies have found association between reduced ADAMTS13-specific activity, ultralarge VWF multimers, and thrombotic angiopathy in patients with diabetic nephropathy. It remains unknown, however, whether ADAMTS13 deficiency or ultralarge VWF multimers have a causative effect in diabetic nephropathy. APPROACH AND RESULTS The extent of renal injury was evaluated in wild-type (WT), Adamts13-/- and Adamts13-/-Vwf-/- mice after 26 weeks of streptozotocin-induced diabetic nephropathy. We found that WT diabetic mice exhibited low plasma ADAMTS13-specific activity and increased VWF levels (P<0.05 versus WT nondiabetic mice). Adamts13-/- diabetic mice exhibited deterioration of kidney function (increased albuminuria, plasma creatinine, and urea; P<0.05 versus WT diabetic mice), independent of hyperglycemia and hypertension. Deterioration of kidney function in Adamts13-/- diabetic mice was concomitant with aggravated intrarenal thrombosis (assessed by plasminogen activator inhibitor, VWF, fibrin(ogen), and CD41-positive microthrombi), increased mesangial cell expansion, and extracellular matrix deposition (P<0.05 versus WT diabetic mice). Genetic deletion of VWF in Adamts13-/- diabetic mice improved kidney function, inhibited intrarenal thrombosis, and alleviated histological changes in glomeruli, suggesting that exacerbation of diabetic nephropathy in the setting of ADAMTS13 deficiency is VWF dependent. CONCLUSIONS ADAMTS13 retards progression of diabetic nephropathy, most likely by inhibiting VWF-dependent intrarenal thrombosis. Alteration in ADAMTS13-VWF balance may be one of the key pathophysiological mechanisms of thrombotic angiopathy in diabetes mellitus.
منابع مشابه
Intrarenal Dopamine Inhibits Progression of Diabetic Nephropathy
The kidney has a local intrarenal dopaminergic system, and in the kidney, dopamine modulates renal hemodynamics, inhibits salt and fluid reabsorption, antagonizes the renin-angiotensin system, and inhibits oxidative stress. The current study examined the effects of alterations in the intrarenal dopaminergic system on kidney structure and function in models of type 1 diabetes. We studied catecho...
متن کاملPronounced kidney hypoxia precedes albuminuria in type 1 diabetic mice.
Intrarenal tissue hypoxia has been proposed as a unifying mechanism for the development of chronic kidney disease, including diabetic nephropathy. However, hypoxia has to be present before the onset of kidney disease to be the causal mechanism. To establish whether hypoxia precedes the onset of diabetic nephropathy, we implemented a minimally invasive electron paramagnetic resonance oximetry te...
متن کاملComparison of Diagnostic Value of Intrarenal Doppler Indices and Microalbuminuria for Detection of Diabetic Nephropathy in Type II Diabetic Patients
Background & Aims: Diabetes is the most common cause of renal insufficiency throughout the world. The main cause of renal failure in diabetic patients is microvascular endothelial injuries that is secondary to atherosclerosis and ischemia. The efficacy of renal Doppler indices such as resistive index (RI) and pulsetile index (PI) for the evaluation of intrarenal arteries has been shown. This st...
متن کاملMycophenolate Mofetil Ameliorates Diabetic Nephropathy in db/db Mice
Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Mycophenolate mofetil (MMF) has an anti-inflammatory effect, inhibiting lymphocyte proliferation. Previous studies showed attenuation of diabetic nephropathy with MMF, but the underlying mechanisms were unclear. This study aimed to identify the effect of MMF on diabetic nephropathy and investigat...
متن کاملPlatelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models.
ADAMTS13 metalloprotease cleaves von Willebrand factor (VWF), thereby inhibiting platelet aggregation and arterial thrombosis. An inability to cleave ultralarge VWF resulting from hereditary or acquired deficiency of plasma ADAMTS13 activity leads to a potentially fatal syndrome, thrombotic thrombocytopenic purpura (TTP). Plasma exchange is the most effective initial therapy for TTP to date. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 37 7 شماره
صفحات -
تاریخ انتشار 2017